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Abstract

In this work a general analytical model is developed for the static response of a beam resting on a tensionless elastic

foundation subjected to a lateral point load. This load may either be located at the center of the beam or may be offset.

An analytical/numerical solution is obtained to the governing equations; this solution makes no assumption about

either the contact area or the kinematics associated with the transverse deflection of the beam. This is in contrast to

previous work in which, for an infinite beam (where the load is symmetric by definition), implicit assumptions about the

contact area and the response kinematics were made. Because these assumptions are dropped, the contact behavior

differs in several fundamental ways from its infinite counterpart. Specifically, it is shown that (i) the contact area is a

sensitive function of the beam length and that this function may change nonmonotonically, (ii) the contact area may

depend on the magnitude of the load, (iii) asymmetric loads, which cannot exist in the infinite problem, have a dramatic

influence the contact area for the finite system. These features are demonstrated with specific examples and explained in

terms of the fundamental physics of the system. The implications for these behaviors are also discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One common approach to modeling contact behavior is to replace one of the contacting components

(presumably the less important one) with an elastic foundation. This approach has the benefit of incor-

porating the flexibility of the secondary component while greatly simplifying the analysis. This approach

has been used repeatedly in the study of beams and plates in contact with other bodies. For example, see
Hetenyi (1946) and Timoshenko (1961), which highlight much of the early work on this subject.

The most common beam-foundation model (regardless of whether it is of the Winkler or Reissner

variety) allows for both compressive and tensile stresses to exist across the interface between the beam and
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the foundation. In other words, if a downward lateral load is applied to a beam resting on a foundation, the

beam will be compressed into the foundation. If the direction of the load is reversed, the beam and the

foundation are pulled up, creating tension in the foundation. However, in applications where adhesion

between the beam and the substrate is not assured, this latter behavior is physically unrealistic. Instead, a
more appropriate model would be a foundation which reacts to compressive stresses but is incapable of

experiencing tension. Such foundations are termed one-way or tensionless foundations.

Previously, studies on infinite beams in contact with tensionless elastic foundations or semi-infinite

substrates have yielded a variety of general results, which are commonly associated with these systems, see

Tsai and Westmann (1967), Weitsman (1970, 1971, 1972), and Lin and Adams (1987). However, as it turns

out, many of these results occur because of the ‘‘infinite beam’’ assumption. More specifically, they stem

from the symmetry that naturally arises; because the beam is infinite, any applied point load must be

centered on the beam. So what are these results? To explain, consider the schematic beam-foundation
system shown in Fig. 1a. As a load is applied, a portion of the beam is compressed into the substrate;

outside the contact zone the outer edges ‘‘lift-off’’ from its zero load equilibrium position. This lift-off

condition must always occur, regardless of the magnitude of the applied load. This lift-off condition pro-

duces another interesting feature. As greater loads are applied, the central portion of the beam plunges

deeper into the foundation. However, the outer edges of the plate experience greater lift-off. The result is

that the contact area remains constant. Moreover, the contact area is independent of the magnitude of the

applied load. All of these general conclusions arise from infinite geometry of the beam and manifest

themselves mathematically in the symmetry of the solution to the equilibrium problem.
More recent work has been undertaken on finite structures; these have largely focused on developing

new techniques for determining the contact area. Most notably, penelty methods and inequality contraints

have been used to determine the contact area (Akbarov and Kocaturk, 1997; Ascione and Grimaldi, 1984;

Ascione and Olivito, 1985). Contact and compatibility contraints have also been used to determine the

contact zone in nonlinear tensionless contact (Joo and Kwak, 1986). In an interesting twist, Khathlan
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Fig. 1. (a) A schematic of the infinite point loaded beam on a tensionless foundation. (b) A schematic of the finite beam with an

eccentric point load and a finite gap.
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(1994) introduced a unknown contact function that was used in a finite difference scheme to determine the

contact area under nonlinear deformations. Alternate solution techniques, such as using boundary elements

and finite integral transforms, have also been used with good results (Hu and Hartley, 1994; Dempsey et al.,

1984; Dempsey and Hui, 1986; Hui and Dempsey, 1988).
The system under consideration here differs in three fundamental ways from the infinite, symmetric

problem described in the early literature. First of all, the beam is finite. This requires specifying some

appropriate boundary conditions which, of course, influence the results. Only two cases are considered

here: the free–free beam and the pinned–pinned beam. Other boundary conditions will impact the results

quantitatively but, from our limited observations, the results will be phenomenologically similar. Hence,

other situations are omitted for the sake of brevity. Second, the finite span permits an off-center point load,

which breaks the symmetry of the system. Finally, in all cases other than the free–free case, the boundary

conditions enable a nonzero gap to exist between the beam and the foundation. All three of these features
are built into the mathematical model described in the next section. The upshot is that the general con-

clusions developed for the infinite problem (i.e., lift-off and fixed contact area) are no longer universally

valid. In their place, more diverse phenomena appear, which can be explained in terms of the basic

mechanics of the system.
2. Equations of equilibrium and boundary conditions

2.1. Definition of the system

Consider the beam-foundation system shown in Fig. 1b. It consists of an linear elastic Euler–Bernoulli

beam and a linear, tensionless foundation. The beam has length L and flexural rigidity EI. An external load

P is applied to the beam and the origin of the coordinate system is centered at this load. The distance to the

left (right) end of the beam is L1 (L2). The contact zone spans the region �X1 < X < X2. The transverse

deflection of the beam is given by W ðxÞ. A finite gap Zo may exist between the foundation and the no-load

equilibrium of the beam (given by the dashed line) for all cases except the free–free case. The substrate is a
tensionless Winkler foundation with modulus k. Of course, the beam will separate from the foundation

once the the displacement is less than the gap size, W < Zo. The one implicit assumption that is made

throughout this work is that the load P is always inside the contact zone. Situations where the load is

outside of the contact zone do occur for sufficiently large asymmetric loads, particularly when the gap size is

very small. The onset of this situation and the ensuing beam response are discussed in Zhang and Murphy

(in preparation).

2.2. Equilibrium equations and their solution

The transverse deflection of the neutral axis W ðxÞ is broken into three distinct regions:
W ðxÞ ¼
W1; �L1 < X < �X1

W2; �X1 < X < X2

W3; X2 < X < L2

8<
:

These correspond to the deflections in the left noncontact region (W1 < Zo), the contact region (W2 P Zo),
and the right noncontact region (W3 < Zo), respectively. Similarly, the equilibrium equation is divided into

three parts:
EI
d4W1

dX 4
¼ 0; �L1 < X < �X1 ð1Þ
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EI
d4W2

dX 4
þ kðW2 � ZoÞ ¼ PdðX Þ; �X1 < X < X2 ð2Þ

EI
d4W3

dX 4
¼ 0; X2 < X < L2 ð3Þ
where dðX Þ is Dirac delta function. For convenience, we introduce the quantity b4 ¼ k
4EI

along with the

following quantities:
n1 ¼ bX1; n2 ¼ bX2; l1 ¼ bL1; l2 ¼ bL2; l ¼ bL;

zo ¼ bZo; w ¼ bW ; n ¼ bX ; F ¼ P

4b2EI
Introducing these quantities into the equilibrium equations (Eqs. (1)–(3)) produces the following non-

dimensional equations:
d4w1

dn4
¼ 0; �l1 < n < �n1 ð4Þ

d4w2

dn4
þ w2 � zo ¼ F dðnÞ; �n1 < n < n2 ð5Þ

d4w3

dn4
¼ 0; n2 < n < l2 ð6Þ
The total solutions to Eqs. (4)–(6) are
w1ðnÞ ¼ A1n
3 þ B1n

2 þ C1n þ D1 ð7Þ

w2ðnÞ ¼ A2 coshðnÞ sinðnÞ þ B2 coshðnÞ cosðnÞ þ C2 sinhðnÞ sinðnÞ

þ D2 sinhðnÞ cosðnÞ �
F
2
sinh jnj þ F

2
coshðnÞ sin jnj þ zo ð8Þ

w3ðnÞ ¼ A3n
3 þ B3n

2 þ C3n þ D3 ð9Þ

Here Ai, Bi, Ci and Di (i ¼ 1; 2; 3) are unknown constants (there are 12). In addition to these constants, the
size of the contact zone, given by n1 and n2, is also unknown. Hence, there are a total of 14 unknown

constants.
2.3. Boundary conditions

To determine these 14 constants, there must be an equal number of boundary/matching conditions. Lets

begin with the matching conditions which occur at the edge of contact. At n ¼ �n1, n2, the geometric

boundary conditions require continuity of the displacement and slope. These are expressed as
w1ð�n1Þ ¼ w2ð�n1Þ;
dw1ð�n1Þ

dn
¼ dw2ð�n1Þ

dn
ð10Þ

w2ðn2Þ ¼ w3ðn2Þ;
dw2ðn2Þ

dn
¼ dw3ðn2Þ

dn
ð11Þ
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There are also four natural boundary conditions at n ¼ �n1, n2. These require continuity of the bending

moment and shear force. These are
d2w1ð�n1Þ
dn2

¼ d2w2ð�n1Þ
dn2

;
d3w1ð�n1Þ

dn3
¼ d3w2ð�n1Þ

dn3
ð12Þ

d2w2ðn2Þ
dn2

¼ d2w3ðn2Þ
dn2

;
d3w2ðn2Þ

dn3
¼ d3w3ðn2Þ

dn3
ð13Þ
At the edge of the contact zone, it is also evident that the displacement must also equal the gap size. So two

additional conditions may be written:
w2ð�n1Þ ¼ zo; w2ðn2Þ ¼ zo ð14Þ
Of course, two alternate conditions that could be used are: w1ð�n1Þ ¼ w3ðn2Þ ¼ zo. However, given the

matching conditions in Eqs. (10) and (11), these are not statements independent from Eq. (14). Eqs. (10)–

(14) give ten conditions. Four additional conditions arise from the boundaries at n ¼ �l1; l2. These will

differ, depending on the particular geometry under consideration. Here, two cases are considered. The first

is the free–free beam with the boundary conditions:
d2w1ð�l1Þ
dn2

¼ 0;
d3w1ð�l1Þ

dn3
¼ 0;

d2w3ðl2Þ
dn2

¼ 0;
d3w3ðl2Þ

dn3
¼ 0 ð15Þ
And for the pinned–pinned beam, they are
w1ð�l1Þ ¼ 0;
d2w1ð�l1Þ

dn2
¼ 0; w3ðl2Þ ¼ 0;

d2w3ðl2Þ
dn2

¼ 0 ð16Þ
This leaves 14 boundary/matching conditions to determine the 14 unknown constants, Ai, Bi, Ci, Di

(i ¼ 1; 2; 3), n1 and n2. The boundary conditions are applied to the solutions given in Eqs. (7)–(9) so that the

unknowns may be determined. At first glance, this may appear to be a simple, linear boundary value

problem. However, because n1 and n2 appear in the argument to the solutions, the problem is nonlinear.

Hence, a multi-dimensional Newton Raphson algorithm (Press et al., 1992) is used to obtain the roots to

this problem numerically.

2.4. Observations

At this juncture it is worth pointing out some of the similarities and differences from the infinite beam

case presented by Weitsman (1970). In that work, Weitsman focused only on the deflection solution in the

contacting regime (i.e., w2). Moreover, because of the symmetry associated with the infinite domain, only

even terms are retained in the solution to Eqs. (8). In other words, the terms coshðnÞ sinðnÞ and

sinhðnÞ cosðnÞ are omitted. This leaves:
w2ðxÞ ¼ B2 coshðnÞ cosðnÞ þ C2 sinhðnÞ sinðnÞ �
F
2
sinh jnj þ F

2
coshðnÞ sin jnj ð17Þ
Note that zo is presumed zero. In this case, there are only three unknowns: B2, C2, n1 ¼ n2 (this last equality

is assured by symmetry). These constants are determined through the matching conditions:
w2ðn1Þ ¼ 0;
d2w2ðn1Þ

dn2
¼ 0;

d3w2ðn1Þ
dn2

¼ 0 ð18Þ
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The first condition is clear (since zo ¼ 0) and the latter two stems from the fact that there is neither a

moment nor a shear force throughout regions one and three (the left and right sides of the beam, outside the

contact zone).

What immediate conclusions may be drawn from this problem and how does it differ from the finite
problem? First of all, the infinite problem has only three unknowns compared to the 14 for the finite case.

The most obvious physical result is that the infinite problem is inherently symmetric. This is evident from

the solution form for w2 and the fact that n1 is presumed equal to n2. What is less obvious is that, after

applying the boundary conditions, the contact length, 2n1, is found to be constant and, hence, is inde-

pendent of the applied load, see Weitsman (1970). This constant contact length feature leads to a third

phenomenon. Namely, as the load is increased the contacting portion of the beam plunges deeper into the

foundation but, to enforce the constant contact length requirement, the beam must lift-off from the

foundation (as is shown schematically in Fig. 1a). And since the constant contact length is assured for any
load magnitude, the lift-off phenomenon must also occur for any applied load. By contrast, the finite beam

problem is not necessarily symmetric, as one would expect if the load were off-center. And, as will be shown

in the next section, the contact length is not constant but depends on a number of things. Once this constant

contact length requirement is relaxed, the lift-off condition is no longer assured. Of course, given the fact

that the finite beam solution contains all of the same terms as the infinite solution (and then some), lift-off is

still a possibility––but it is not a requirement.
3. Results

3.1. The free–free beam

In the case of the finite, free–free beam, there can be no initial gap separation, i.e., zo ¼ 0. To examine the

differences between the finite and infinite beams, lets begin by considering how the contact length (n1 þ n2)

is influenced by the overall beam length. This is shown in Fig. 2 for the symmetric case (l1 ¼ 0:5l) and for
one asymmetric case (l1 ¼ 0:6l). Before proceeding, it should be noted that it was determined numerically

that these results are independent of the applied load. Now, consider the symmetric case. For short beam

lengths, the contact length scales linearly with the beam length; the slope is one. This simply means that the
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entire beam is in contact with the foundation. This conclusion is supported by the two deflection curves

shown in Fig. 3; the beam subjected to the larger load is compressed further into the substrate. In Fig. 2, as

the beam length approaches p, the contact length quickly levels off. With further increases in the beam
length, the contact length remains constant at p; this is consistent with the infinite beam case presented by

Weitsman (1970). The constant contact length behavior is accompanied by the lift-off phenomenon, as

described previously. This is shown in Fig. 4 for a beam length of l ¼ 4 with loads F ¼ 0:1 and 0.2. From

Fig. 4, it is evident that the contact length is independent of load.

For the short beam length regime (l < p), two mathematical points should be made. The first is that the

domain of Eq. (5) is still valid but that the calculated contact length n1 exceeds l1 (similarly, n2 exceeds l2).
However, the domains of Eqs. (4) and (6) are now incorrect but, since they do not describe any part of the

physical beam, this inconsistency is irrelevant. The second is that the displacement constraint condition,
Eq. (14), appears to be violated. In fact, this condition is still satisfied––just outside the physical domain,
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n1 < n < n2. Obviously, this can only happen for a beam with at least one free end, since any boundary

support would prevent the end from contacting the foundation.

Fig. 2 also shows an asymmetrically loaded beam with l1 ¼ 0:6l. As in the symmetric case for short

beams, the contact length grows linearly (with a slope of one). As before, this means that the entire beam is
in contact with the foundation. As the length is increased, the contact length continues to grow, albeit more

slowly than the symmetric case. For long beams, the contact length levels off to a value of p, which matches

the infinite beam contact length. The more gradual growth of the contact length can be explained by

looking at the two distances n1 and n2, which define the edges of contact and are measured from the load

location. Fig. 5a and b show the left and right contact lengths, respectively, as a function of the beam

length. For small beam lengths, the left side contact length grows linear at a rate of n1 ¼ 0:6l (for this case),
which is a faster rate of growth than the symmetric case (n1 ¼ 0:5l). As a result, n1 in the asymmetric case

will reach the asymptotic value of p=2 more quickly than its symmetric counterpart, indicating that left side
lift-off will occur sooner than in the symmetric case. By contrast, for short beams, the right side contact

length grows linearly as n2 ¼ 0:4l, which is slower than the symmetric case (n2 ¼ 0:5l). Of course, the total

contact length is ðn1 þ n2Þ. Hence, the fact that n2 approaches p=2 more slowly, accounts for why the net

contact length for the asymmetric case is below the symmetric case, again see Fig. 2. For confirmation of

these interpretations, consider Fig. 6. At a beam length of l ¼ 3, Fig. 5a suggests that the left side contact

length should be n1 ¼ p=2 and that left side lift-off should occur. This agrees with Fig. 6. Moreover, by Fig.

5b, the entire right side should be in contact with the substrate and the contact length should be

n2 ¼ 0:4� 3 ¼ 1:2; this also agrees with Fig. 6. For the sake of comparison, the parameter combinations
used in Fig. 6 correspond to those used in Fig. 3 (the symmetric case).

3.2. The pinned–pinned beam

In the case of a pinned–pinned beam, two issues are considered. As before, the load may be either

symmetric or asymmetric and the gap size may be nonzero. For the moment, lets fix the gap size at zo ¼ 0

and focus on the symmetric and asymmetric loading cases. Fig. 7 shows the contact length as a function of
the beam length for the cases l1 ¼ 0:5l; 0:6l. As in the previous section, these results (with zo ¼ 0) were

found to be independent of the load magnitude. For short beams, the contact length of the symmetric case
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grows linearly with slope one. Again, this indicates that the entire beam is in contact with the foundation.

This persists until l ¼ 6:187. As the beam length is increased further, the contact radius actually begins to

shrink. This beam length (l ¼ 6:187), separating the regions of growing vs. shrinking contact length, is the

critical length for the zero gap separation case. The shrinking contact is accomplished by the lift-off phe-

nomenon, which is initiated at the critical beam length. As the beam length is increased further, the contact

length decreases and asymptotically approaches p.
The asymmetric loading case in Fig. 7 (for l1 ¼ 0:6l) begins at zero and has a contact length that initially

grows linearly with the beam length. Again, in this regime the entire beam is in contact with the foundation.
As the length is increased, the contact curve shows two peaks––the contact length grows, shrinks, grows

again, and then shrinks again as it asymptotically approaches p. To explain this behavior, consider Fig. 8,

which shows the behavior of the two distances n1 and n2 that define the edges of contact. The symmetric
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case is shown as well, for comparison. As before, left side contact point initially grows as n1 ¼ 0:6l. This
side of the contact peaks before the symmetric case and then shrinks gradually to the asymptotic value of
p=2. The shrinking contact area (after the peak) occurs because the left side begins to lift-off the foundation.

The right side contact initially grows more slowly at n2 ¼ 0:4l and peaks after the symmetric case. The

subsequent drop in the contact length is due to right side lift-off. If these two functions are summed, they

form the asymmetric case shown in Fig. 7. The first peak is attributed to the peak in n1. The drop in contact

results from the drop in n1 after its peak (n2 is increasing but not fast enough to offset the drop in n1). The

second peak is due to n2. Finally, Fig. 9 shows the deflection under two different loads, F ¼ 0:1; 0:2, for a
beam length of l ¼ 30. Here both sides have clearly lifted off. Moreover, the contact length, which is very

near p, is independent of the applied load.
Now consider the effect of a finite gap separation, zo. Fig. 10 shows the contact behavior of the sym-

metric beam both with and without a gap separation. The solid curve shows the contact length with zo ¼ 0

and a load of F ¼ 0:1 and 0.5; they are coincident, meaning that the contact length is load independent in

the zero gap case. As before, the curve begins at the origin and is nonmonotonic. Now consider a small,

nonzero gap separation of zo ¼ 0:05. The contact length is given by the dashed (dash-dotted) line for a load

of F ¼ 0:1 (F ¼ 0:5). These two curves quite clearly show that the contact length is load dependent when the

gap size is nonzero. An example highlighting the different contact lengths is shown in Fig. 11. Regarding the

three cases shown in Fig. 10, three other observations may be made. First, the contact length curve does not
begin at the origin as do all the other (zero gap) cases. Contact cannot be initiated until the center point

deflection is equal to the gap size – and short beams are too stiff to have this much deflection under a small

load. So contact is not initiated until the center point deflection becomes (in dimensional terms)

W ðl
2
Þ ¼ Zo ¼ PL3

48EI
. With this expression, the appropriate parameter values may be used to determine the

critical beam length associated with initial contact. For example, in the case F ¼ 0:1 and zo ¼ 0:05, this
value is l ¼ 1:816, which agrees with the point where the dashed line departs the x-axis in Fig. 10. Second,

the curves may or may not increase monotonically, depending on the load level. Third, as the load is in-

creased or as the gap separation decreases, the contact length curve will approach the zero gap result. This
suggests, at least heuristically, that the quantity F

zo
would indicate the relative proximity of the nonzero gap
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Fig. 9. Deflection curves showing lift-off for the asymmetrically loaded pinned–pinned beam under two different loads. Here, l ¼ 30

and zo ¼ 0. Note: the contact length is the same.
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Fig. 10. The total contact length for the symmetrically loaded pinned–pinned beam as a function of the beam length. Several cases are

shown––namely, with and without a finite gap separation.
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curve to the zero gap curve, large values of F =zo being closer to the zero gap case. This observation also

explains why the zero gap case is independent of the load F (F =zo ¼ 1, regardless of the load and the

curves converge).
Finally, the asymmetric loading case is shown in Fig. 12, where l1 ¼ 0:6l. The no gap case shows the

double peak associated with uneven lift-off, as described previously. The introduction of the gap produces

similar behavior to the symmetrically loaded case. However, at short beam lengths, the system is sufficiently

stiff such that the offset load point does not come into contact with the foundation. This ‘‘load outside the

zone of contact’’ situation cannot be captured by this model but may be described by the model in Zhang

and Murphy (in preparation).
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Fig. 11. Deflection curves for the pinned–pinned beam with a finite gap zo ¼ 0:05 under two different symmetric loads. The contact

lengths are load dependent in this case.
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4. Conclusions

In situations where adhesion is not significant, the contact problem between a beam and a foundation

may be characterized as tensionless. Early studies on tensionless foundations focused on infinite beams

whose equilibrium position coincided with the surface of the foundation. The beams were subject to

constant lateral point loads and the resulting deformation was examined. It was previously shown that (i)
the contact length was constant (i.e., load independent) and equal to p and (ii) the constant contact length

was assured by the lift-off phenomenon. These two general results stem from the fact that the beam is

infinite, which implies that the load must be centered on the beam (assuring symmetry in the problem).

More recent studies have focused on numerical solutions to finite dimensional problems.
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In the present study, an analytical approach is taken for a finite beam in contact with a tensionless

foundation; this undermines the general results determined above. In the process, it also uncovers a variety

of new and interesting behavior. Because the beam is finite, three other issues immediately come into play.

Namely, the boundary conditions begin to play a role (though only the free–free and pinned–pinned cases
are considered here), the loading may be symmetric or asymmetric, and a finite gap may exist between the

beam and the foundation prior to loading. All of these facets influence the contact behavior.

In the case of the free–free beam, where the gap size must be zero, it is shown that the contact length

varies with the length of the beam. For short beams, the contact length grows linearly with the beam length.

This occurs because the entire beam is in contact with the substrate––so as the beam length increases so

does the contact length. Ultimately, as the length increases beyond l ¼ p, the contact length becomes

constant. If the load is shifted off-center, the short beam results are the same. However, as the beam gets

longer, the asymmetry permits one sided lift-off and the contact area is less than that for the symmetric
case. As the beam length increases, the asymmetry is less relevant and the system approaches the symmetric

case.

For the symmetrically loaded pinned–pinned case with zero gap (zo ¼ 0), the contact length initially

grows with the beam length until a critical length, after which it begins to shrink. As the beam length is

increased further, the contact length asymptotically approaches from above the infinite beam contact length

(p). If the load is asymmetric, the contact length goes through a sequence of growing and shrinking: it

grows, shrinks, grows again, and shrinks again. The first two parts of this sequence (increasing and then

shrinking contact length) is attributed to one sided lift-off and the second two parts occur when the second
side lifts-off. As a result, one may conclude that only single or double peak behavior may be seen in these

systems (i.e., there is no physical mechanism for a third peak to appear). Finally, as a gap is introduced,

zo 6¼ 0, the contact length becomes load dependent. However, the impact of the gap may be qualitatively

assessed by the relative magnitude of the quantity F =zo. If this quantity is small the contact length (vs. beam

length) will be significantly less than the no gap case. If F =zo ! 1, then the behavior is approaches the no

gap case. Moreover, this fact underscores why, in the zero gap case, the contact length is independent of

load: F =zo ¼ 1 is independent of load if zo ¼ 0.
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